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1. Introduction

One of the fundamental mathematical objects of String Theory (ST) is the Virasoro algebra.

It is used in the description of simple open/closed strings and is well-developed in Conformal

Field Theory (CFT), a primary tool for probing strings. A familiar technique from CFT

commonly used in this context is the Operator Product Expansion (OPE) as it is closely

related to the calculation of two-point correlation functions which themselves are related

to the propagation and interaction of fields represented in ST.

In many discussions, the beginning of such constructions involves first finding an action

(containing appropriate fields) that is invariant under a realization of the (super)conformal

symmetry group. The solutions of the fields equations of motion are expanded in terms

of Fourier series. The Noether charges associated with the generators are, using their

expressions in terms of the fields, also then expressed in terms of such Fourier series.

Finally OPE’s are then calculated. Clearly the role of the action is prominent, both in

determing the Noether Charges and the field equations of motion.

Instead the method to be used in this work for calculating these OPE’s is the Coadjoint

Orbit method developed by Kirillov [1] and built upon the elements of Lie algebras and

their realizations. One goes from the closed algebra of operators to elements of a vector

space. This vector space is then expanded by the addition of a dual space of covectors and

a bilinear metric between the two. These objects are then used to find the coadjoint orbits

which can be used in the OPE.

The outline of the paper is as follows. The first section will describe the extended

GR Super Virasoro algebra with a focus on under what conditions does it close and the

corresponding number of operators. The next section will explain how the Coadjoint Orbit

method is used to generate the Operator Product Expansion. The fourth section shows the

calculation of various short distance Operator Product Expansions for the Super Virasoro

algebra. Finally, there will be a discussion of some of the implications of the results of

the paper.
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Generators Symmetry Derivation No. of generators

P Translations i ∂τ 1

∆ Dilations i(τ∂τ + 1
2ζ

I∂I) 1

K Special Conformal i(τ2∂τ + τζI∂I) 1

QI Supersymmetry i( ∂I − i 2 ζI∂τ ) 4 = [N ]

SI S-supersymmetry iτ∂I + 2τζI∂τ + ζIζ
J∂J 4 = [N ]

TI J SO(N ) i(ζI ∂J − ζJ ∂I) 6 = [N (N − 1)/2]

Table 1: Generators and their associated symmetries and derivations.

2. Realization of the 1D, N = △ extended GR Super virasoro algebra

The Super Virasoro algebra can be realized a number of ways including starting from

a Lie group and adding a central extension. In the method discussed here, we will not

describe the full generation of the algebra from an affine Lie algebra but simply focus of

the generators themselves. The Coadjoint Orbit method relies heavily being able to write

down the generators and their commutation relations.

The Super Virasoro algebra contains the SO(N ) algebra using TIJ as generators with

translations generated by momentum generators P , the dilations, ∆, special conformal

transformations, K, the supersymmetry generators QI and SI. The operators can be rep-

resented by derivations of the one dimensional time variable and its derivative, τ and ∂τ ,

and the N = 4 superspace variables and their derivatives, ζI and ∂I. The generators and

their corresponding symmetries are listed in table I.

This algebra can be deformed in N = 4 with the addition of a Levi-Civita tensor,

ǫIJKL, and a parameter, ℓ, that measures the deformation. It only affects three of the

six operators:

SI(ℓ) ≡ iτ∂τ + 2τζI∂τ + 2ζIζ
J∂J + ℓǫIJKL

(

ζJζK∂L −
1

3!
ζJζKζL∂τ

)

(2.1)

K(ℓ) ≡ i

(

τ2∂τ + τζI∂I − i 2 ℓǫIJKL

[
1

4
ζIζJζK∂L + ζIζJζKζL ∂τ

])

(2.2)

TI J(ℓ) ≡ iζ[I∂J] − iℓǫIJKLζK∂L (2.3)

The next step is to recast the previous generators in form in which the relationship to

the super Virasoro algebra is more obvious. This is done by choosing the forms

Lm ≡ −

[

τm+1∂τ +
1

2
(m+ 1)τmζ∂ζ

]

, Hr ≡ −

[

τ r+1∂τ +
1

2
(r + 1)τ rζ∂ζ

]

(2.4)

Fm ≡ iτm+ 1

2 [∂ζ − i 2ζ∂τ ], Gr ≡ iτ r+
1

2 [∂ζ − i 2ζ∂τ ] (2.5)

where m ∈ Z and r ∈ Z + 1
2 . The L and H are the same except L takes integers and H

takes half integers. The F and G forms follow the same pattern. H is fermionic and L is

bosonic because L exists in the N = 0 case.
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These new generator pairs can be combined using a different notation with simple

commutation relations:

(

LA ≡ (Lm,Hr)

GA ≡ (Fm, Gr)

)

→






⌊⌈LA , LB} = (A− B)LA+B

⌊⌈GA , GB} = −i 4LA+B

⌊⌈LA , GB} = (1
2A− B)GA+B




 (2.6)

with A,B taking values in Z and Z + 1
2 . For N = 1, this pair of generators is closed

under graded commutation. In the 1D N = 4 exceptional Super Virasoro algebra, an

index I for the supersymmetric levels has to be added and the ℓ-deformed terms must

be put in properly, including a ℓ-deformed supersymmetric TI J(ℓ) generator. For the 1D

N = 4 exceptional Super Virasoro algebra, the set of generators (LA(ℓ), GI
A(ℓ), T I J

A (ℓ))

closes under graded commutation. These generators are

LA ≡ −

[

τA+1∂τ +
1

2
(A + 1)τAζI∂I

]

+ iℓA(A + 1)τA−1[ζ(3)I∂I + i4ζ(4)∂τ ] (2.7)

GI
A ≡ τA+ 1

2 [∂I − i2ζI∂τ ] + 2

(

A +
1

2

)

τA− 1

2 ζIζK∂K

+ℓ

(

A +
1

2

)

τA− 1

2 [ǫIJKLζJζK∂L − i4ζ(3)I∂τ ] + i4ℓ

(

A2 −
1

4

)

τA− 3

2 ζ(4)∂I (2.8)

T I J
A ≡ τA[ζ [I∂J] − ℓǫIJKLζK∂L] − i2ℓAτA−1[ζ(3)[I∂J] − ℓǫIJKLζ

(3)
K ∂L] (2.9)

Their supercommutation relations are

⌊⌈LA , LB⌋⌉ = (A− B)LA+B +
1

8
c (A3 −A)δA+B,0 (2.10)

⌊⌈LA , G
I
B⌋⌉ =

(
A

2
− B

)

GI
A+B (2.11)

⌊⌈LA , T
I J
B ⌋⌉ = −BT I J

A+B (2.12)

{GI
A , G

J
B} = −i4δI J LA+B − i 2 (A− B)T I J

A+B − i c

(

A2 −
1

4

)

δA+B,0δ
I J (2.13)

⌊⌈T I J
A , GK

B ⌋⌉ = 2 (δJ KGI
A+B − δI KGJ

A+B) (2.14)

⌊⌈T I J
A , TKL

B ⌋⌉ = T IK
A+B δ

J L − T I L
A+B δ

J K+T JL
A+B δ

I K−T J K
A+B δ

I L−2c(A−B) (δI[K|δJ|L]) (2.15)

A number of interesting points can be found here. In previous papers [2, 3], the

non-deformed (ℓ = 0) 1D N = 4 GR Super Virasoro algebra is used to generate OPEs.

This algebra is the “large” N = 4 algebra which has a 16-dimensional representation. It

does not close unless two more sets of generators (U’s and R’s, which are related to the

T’s,) are added. The ℓ = ±1 cases of the ℓ-extended algebra map the generators to a

8-dimensional representation which does not need the other generators to close. This can

be seen when instead of using derivations to represent the generators, an appropriately

sized Clifford algebra is used [4]. The use of a Clifford algebra may allow more insight into

the whole process.
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Another point is whether the central extension should be dropped in the equations.

From [5], the closure of the algebra is found to be related to the existence of a central

extension, specifically the central extension is eliminated for N > 2. Because N = 4 closes

also, it is a valid question to ask if a central extension may exist too. The Jacobi Identity

on (GI
A, U

I J
B , GK

P ) was used before to answer this question. Because the supercommutators

have the same form as the N > 2, it would seem that the answer would be true. But

there are no longer U I J
A generators in the algebra. The Jacobi identity for the other

generators must be analyzed to check if a central extension is allowed. Although this could

be addressed now, this question will be revisited later when the Clifford representation of

the generators is presented . For now, c will be set to zero.

3. Description of the coadjoint orbit method and operator product ex-

pansion

The actual use of the method flows from the following steps:

1. Choose an coadjoint field and an adjoint action on it. This gives the variation of the

physical field with respect to some transformation.

2. Calculate the Poisson bracket of the charge generated by the adjoint action on the

the physical field. The generating function of the transformation will come from the

calculations of the adjoint action on the coadjoint vector done earlier.

3. Compare to the integral form of Poisson bracket. The short distance OPE will be

the equivalent expression of the previous step once it has been put in the associated

integral form. This will involve the use of delta functions on the space (a line in the

1D case) and its derivatives.

Typically, one needs an action to determine the useful field theory quantities such as

correlation functions. However, these quantities are dependent on the symmetries found in

the theory and not necessarily obvious in the action. The Coadjoint Orbit method allows

for these quantities to be calculated without an action and totally based on the underlying

symmetries of the theory being studied.

As an aside, one of the uses of coadjoint orbits is relate the classification of the orbits

to the classification of another related mathematical structure. For example, if G is the

set of all linear n × n real invertible matrices, then the classification of coadjoint orbits is

equivalent to the classification of matrices up to similarity. The analysis of the coadjoint

orbits allows one to classify two dimensional conformal field theories (2D-CFT’s).

The Operation Product Expansion (OPE) is an expression of the product of two oper-

ators as a sum of singular functions of other operators. This is useful when calculating the

product of field operators at the same point. Wilson and Zimmerman [8] have a discussion

of the use of OPEs in Quantum Field Theory. In this case, the operators are tensor fields.

The general form of an OPE is

A(y)B(x) ∼
∑

i

Ci(x)(y − x)−i + (non singular terms) (3.1)
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where Ci is a member of a complete set of operators. The non-singular terms are not

important because the singular terms determine the properties of the product of operators.

The goal is to express the product of fields that represent the underlying algebra in

terms of functions of other fields which represent other elements in the algebra. These prod-

ucts are further related to useful field theory quantities such as propagators and mass terms.

4. Calculation of short distance operator product expansions

The methods used are found in [2, 3, 5, 7]. Applying this process to the algebra of interest,

the adjoint vector of the 1D N = 4 GR SVA is L = (LA, G
I
B , T

J K
C ). The adjoint acting on

this gives

ad((LM, GK
N , T

LM
P ))(LA, G

I
B, T

J K
CP ) = (LM, GK

N , T
LM
P ) ∗ (LA, G

I
B, T

I J
P ) (4.1)

= (LQ,new, G
H
R,new, T

FG
S,new) (4.2)

The coadjoint element is L̃ = (L̃A, G̃
I
B, T̃

J K
P ) and correspondingly gives

ad((LM , GK
N , TLM

P )) (L̃A, G̃
I
B, T̃

J K
P ) = (LM, GK

N , T
LM
P ) ∗ (L̃A, G̃

I
B, T̃

J K
P ) (4.3)

= (L̃Q,new, G̃
H
R,new, T̃

FG
S,new) (4.4)

and the inner product is

〈(L̃M , G̃
K
N , T̃

LM
P )|(LA, G

I
B , T

JK
C )〉 = δM,A + δN,Bδ

I
K + δP,Cδ

JK
LM (4.5)

To calculate the OPEs, one needs the expression of δLL̃ = L ∗ L̃ where L is an adjoint

vector and L̃ is a coadjoint vector. Using the fact that 〈L̃|L〉 is an invariant and L ∗ L̃ can

be calculated from 〈L′ ∗ L̃|L〉 , one can use the Leibnitz rule on the invariant form and get

〈L ∗ L̃|L〉 = −〈L̃|L ∗ L〉 (4.6)

Since L and L̃ are made up of components (L, G, T), it is easier to calculate pairs

of adjoint elements acting on coadjoint elements. This reduces the number of calculations

greatly. The list of adjoint/coadjoint pairs are

δL̃ = L ∗ L̃+G ∗ G̃+ T ∗ T̃

δG̃ = L ∗ G̃+G ∗ L̃+G ∗ T̃ + T ∗ G̃

δT̃ = L ∗ T̃ +G ∗ G̃+ T ∗ T̃

This checks against the calculations from [3]. Note that there is no T̃ ∗ L term in the list

of changes to the coadjoint vector.

Using a realization of the algebra as tensor fields, the adjoint representation elements

are F = (η, χI , tRS) , which are general elements of the Virasoro, Kac-Moody, and so(4)

algebras respectively. The coadjoint fields are B = (D,ψI , ARS) , a rank two pseudo tensor,

a set of 4 spin-3/2 fields, and the 6 so(4) gauge fields.

– 5 –
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The coadjoint action can be seen as generating the changes in the fields. It acts as

F ∗ B̃ = δF B̃ = (η, χJ, tKL) ∗ (D,ψI, AJ K) = (δD, δψI, δAJ K). (4.7)

There are three charges, one for each adjoint element/operator:

LA → η → Qη =

∫

dxGaη
a (4.8)

GIA → χI → QχI =

∫

dxGa(χ
I)a (4.9)

T IJA → tI J → QtI J =

∫

dxGa(t
I J)a (4.10)

Choosing L ∗ L̃ as an example, the physical field representation is used:

L ∗ L̃→ δηD (4.11)

Lη ∗ L̃D → L̃D̃ : D̃ = −D′η − 2Dη′ (4.12)

δηD = D̃ (4.13)

δηD = −{Qη,D} =

∫

dy η(y)(D(y)D(x)) (4.14)

Qη =

∫

dxGaηa =

∫

dx(−D′η − 2Dη′)ηa (4.15)

{Qη,D} =

∫

dy(−D′(x)η(y) − 2D(x)η′(y)). (4.16)

Using the 1D formula for the delta function,

δ(y − x) =
1

2πi(y − x)
(4.17)

and integration by parts to separate out η(x) terms,

{Qη,D} =

∫

dy

(

∂xD(x)
−1

2πi(y − x)
+D(x)

−1

πi(y − x)2

)

︸ ︷︷ ︸

η(x)

=

∫

dy [D(y)D(x)] η(x)

(4.18)

Thus by taking pairs of individual adjoint elements acting on individual coadjoint

elements, the OPE’s can found.

1. D(y)O(x)

Lη ∗ L̃D = L̃D̃ → D̃ = −D′η − 2Dη′ (4.19)

Lη ∗ G̃
Q̄

ψQ̄
= G̃Q̄

ψ̃Q̄
→ ψ̃Q̄ = −

(
3

2
η′ψQ̄ − η(ψQ̄

′

)

)

(4.20)

Lη ∗ T̃
R̄S̄
AĪJ̄ = T̃ R̄S̄

ÃĪJ̄ → ÃĪJ̄ = −(ARS)′η − η′ARS (4.21)

– 6 –
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These expressions yield the following OPEs:

D(y)D(x) =
−1

πi(y − x)2
D(x) −

1

2π(y − x)
∂xD(x) (4.22)

D(y)ψQ(x) =
−3

4πi(y − x)2
ψQ(x) −

1

2πi(y − x)
∂xψ

Q(x) (4.23)

D(y)ARS(x) =
−1

2πi(y − x)2
ARS(x) −

1

2πi(y − x)
∂xA

RS(x) (4.24)

2. ψ(y)O(x)

GIχI ∗ L̃D = 4iG̃Iχ̃I → χ̃I = −χID (4.25)

GIχI ∗ G̃
Q̄

ψQ̄
=
δIQ̄

2
L̃
D̃

+ T̃ IQ̃
ÃIQ̃

→ D̃ =
[

(ψQ̄)′ψI − 3(ψI)′ψQ
]

ÃIQ̃ = 2(χIψQ̃ − χQ̃ψI) (4.26)

GIχI ∗ T̃
R̄S̄
τ R̄S̄ = δ[RS][IQ]G̃Q

ψ̃Q
→ ψQ̄ = 2(χI)′tRS + χI(tRS)′ (4.27)

The OPEs are

ψI(y)D(x) =
−3

4πi(y − x)2
ψI(x) −

i

4π(y − x)
∂xψ

I(x) (4.28)

ψI(y)ψQ(x) =
−4i

(y − x)
δIQD(x) (4.29)

ψA(y)ARS(x) =
π

i(y − x)
(δARδLS − δASδLR)ψL(x) (4.30)

3. A(y)O(x)

T IJtIJ ∗ G̃Q̄
ψQ̄

= 2δQIGJ
φ̃J − 2δQJGI

φ̃I → ψQ̄ = tIJψQ (4.31)

T IJtIJ ∗ T̃ R̄S̄
τ R̄S̄ = −δ[R̄S̄](δJKRS + δKJRS )T̃ R̄S̄

(tJK )′τ R̄S̄ − L̃D̃δ
[R̄S̄][JK] → D = (tJK)′τ R̄S̄ (4.32)

Note that there is no T ∗L̃ term. However the AJK(y)D(x) and AJK(y)ARS(x) terms

are generated from the T ∗ T̃ action. The OPE that follow are

AJK(y)D(x) =
1

4πi(y − x)2
(δRSδJK − δRKδLS)ARS(x) (4.33)

AAB(y)ψC(X) =
−1

πi(y − x)
(δACψB(x) − δABψC(x)) (4.34)

AJK(y)ARS(x) =
1

4πi(y − x)
δJKRSAB AAB(x) (4.35)

In the non-extended version of the algebra [2, 3, 5, 7], there are extra generators that

must be added to close the algebra. When the Coadjoint Orbit method is applied, these

extra generators correspond to fields and have their own OPEs. The fields ω and ρ, which

correspond to the U and R operators respectively, have 44 and 11 independent components.

– 7 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
4

The spin of the fields are varied, either being 0 or 1
2 depending on the structure of the

individual operator. This also true for the general extended ℓ 6=±1 case. However, the

ℓ = ±1 case does not have these fields or their OPEs. Thus there is no difference between

the regular (ℓ=0) and extended (ℓ 6=0) cases except when ℓ = ±1. These cases reduce the

number of operators and fields necessary to fully describe the theory.

5. Discussions, interpretations, and conclusions

There are a number of interesting ideas and directions that this work has brought up:

• Clifford Algebra Representation: Hasiewicz, Thielemans, and Troost [4] have shown

that superconformal Lie superalgebras contain a Clifford algebra structure in them.

By exploiting this structure, new information can be gained by the implications of

how the Clifford algebra exists in the larger structure. With the algebra elements

written as elements of a Clifford algebra, all of the previous work can be double

checked and reanalyzed in a different context. The benefit of going to a Clifford alge-

bra representation is that the Clifford algebras are well-known and well-understood.

In [4], there is some discussion about what this would entail and will be investigated

for future research.

• Coadjoint Orbit Method: The Coadjoint Orbit method has a clear mathematical

basis underlying it. There exists a relationship between the equivalence class of

linear functions on a Lie group (trajectories) and a natural sympletic structure on

the relevant manifold (phase space). The connection between the two seems more

obvious in terms of Clifford algebras, which has a foot in both worlds. It may be

that a simpler explanation can be found by exploring this direction with the first step

going from the Clifford algebras to the underlying Spin groups and algebras which

are closer related to Lie groups.

• Higher-point functions (3-point and 4-point correlators): The methods of this paper

describe using any representation of symmetry generators to develop OPEs describing

two-point correlation functions. In [8], there is a way to extend this methodology

to higher point functions. Thus, it may be possible to totally “skip” Hamiltionian

and Langrangian and just calculate correlation functions from symmetries. Skipping

that step, however, does not absolve one from still figuring out the dynamics of the

theory, which are contained in the propagation and interaction terms calculated from

the OPEs. Also, one must deal with the difficulties of the constraints on 3-point and

4-point functions from Conformal Field Theory.

• Since the Virasoro and Kac-Moody algebras are Lie algebras, they have interpreta-

tions as manifolds. What does the central extension mean in terms of manifolds? A

central extension in group representation terms means that there are operators (or

combinations of operators) that exist in the center of the group besides the typical

identity element. The formal name for this concept is an ideal, a subgroup that maps

– 8 –
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products between members inside and outside the subgroup into the subgroup. In

this case, it represents that elements in the group can be pulled back to “another

origin”. The interpretation of the central extension should be important for any work

involving Geometrical Representation theory.

• In [4], they discussed the non-existence of a description of superconformal Lie super-

algebras with dim W > 4. There were a number of restrictions to this statement

but they discuss N > 4 superconformal superalgebras that were not Lie superal-

gebras. Further research into this area could provide a possible generalization of

supersymmetry algebras.

Our use of super vector fields in order to realize the symmety generators in a geo-

metrical manner also points in one other direction. Since there is no metric defined on a

Salam-Strathdee superspace, the conventional and familiar role of the metric (or a putative

super-metric) is taken over by super-frame fields or super vielbeins. Thus a definition of

Killing super-vectors must rely on a super vielbein. As such there is a superspace geometry

that is naturally associated with the vector fields (realizing the symmetry). This geometry

is the conventional one of a flat Salam-Strathdee superspace. This raises a question. One

can imagine a super vielbein that does not describe a flat Salam-Strathdee superspace but

one with a non-trivial topology. If it possesses a related set of Killing super vectors. In

principle it should be possible to derive short distance expansions in this case.

In conclusion, the short distance OPEs for the extended 1D N = 4 Super Virasoro

algebra was calculated and found to be exactly of the same form of the 1D N = 2 case.

Further investigation showed the full relationship between the “large” and “small” N = 4

algebras and the deeper relationship between the two through the Clifford algebra. Let us

end by noting that the relation to Clifford algebras also suggest that ‘Garden Algebras’

defined in [9] seem likely to provide a starting point for some OPE’s.

“No human investigation can be called real science if it cannot be

demonstrated mathematically.”

— Leonardo da Vinci
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